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Abstract. Due to the influence of the coupling torque in the two-link manipulator, the disturbance observer 

(DOB) method cannot achieve an ideal vibration suppression effect. A velocity controller is proposed, 

including a decoupler and a rigid-body state observer (RBSO), to simultaneously decrease the coupling 

torque and vibrations. The two-link manipulator is modelled as a two-input two-output (TITO) system in this 

paper. The decoupler is designed based on the dynamic model of the TITO system in a simplified structure. 

The RBSO contains a state observer (SOB) and a damper. The SOB obtains a rigid-body velocity from its 

state variable. The damper feeds back the error between the rigid-body velocity and link velocity to a 

proportional-integral controller to add system damping, achieving vibration suppression. The effectiveness to 

decrease coupling torque and vibrations of the proposed method are verified in simulations. 
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1. Introduction 

The two-link manipulator, as the simplest type in collaborative robots, is usually modelled as a two-input 

two-output (TITO) system. Importantly, it needs a lightweight design to ensure the safety of human-robot 

interaction [1]. However, the lightweight design reduces the mechanical body’s stiffness, leading to 

vibrations easily, which seriously affects the accuracy of motion control and the system’s stability. Hence, 

vibration suppression research has been very urgent in recent years [2]. 

The vibration suppression algorithms can mainly be classified into feedforward and feedback methods. 

The feedforward methods, such as the input shaping method [3] and model-based feedforward method [4], 

do not limit by the measurement accuracy of encoders but are affected by model uncertainties. The feedback 

methods are more commonly used in the vibration suppression of the TITO system. The fuzzy PID method 

can adaptively adjust the PID parameters online by using the fuzzy logic to depress vibrations [5]. 

Nevertheless, the fuzzy logic requires expert knowledge [6]. The acceleration feedback method is effective to 

suppress vibration. While the acceleration solution error is large, or installs accelerometer needing extra cost 

[7]. The disturbance observer (DOB) method is more popular to suppress vibrations due to its robustness to 

external disturbances and model uncertainties [8, 9]. Although the DOB method has high requirements on 

the accuracy of its nominal model, it can observe some signals without any extra sensors, such as the 

acceleration or coupling torque [10]. 

Nevertheless, the coupling torque between adjacent joints in a TITO system is much large, which cannot 

be considered an external disturbance for the DOB method. Furthermore, the coupling torque significantly 

worse the vibration suppression effects. Therefore, aiming to achieve an ideal vibration suppression effect, 

the coupling torque of a TITO system also needs to be decoupled. 

The decoupling algorithms for a TITO system mainly can be divided into two categories: static 

decoupling and dynamic decoupling [11]. The static decoupling needs less system information, which 

reduces the influence of model uncertainties. However, the static decoupling is designed based on steady 

gains. It is easy to introduce unfavorable factors in the high-frequency stage, affecting the decoupling effect 

[12]. The dynamic decoupling can achieve better performance but needs a more accurate system model. It 

includes ideal decoupling, simplified decoupling and inverted decoupling. Among these three kinds of 
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dynamic decoupling, the simplified decoupling only needs two decoupler matrix and is easily implemented 

in practice [13]. In addition, there are other intelligent decoupling methods, such as adaptive control [14], 

neural network control [15], and so on. These intelligent methods are not strictly depending on the system 

model, which is easy to achieve good decoupling results. Nevertheless, they are relatively complex and time-

consuming. 

This paper proposes a method that combines a dynamic decoupler in a simplified structure and a rigid-

body state observer (RBSO). The decoupler aims to decouple the coupling torque between adjacent joints. 

The RBSO aims to depress vibrations of the TITO system in a decentralized structure, which contains a state 

observer (SOB) and a Damper. The SOB aims to observe a rigid-body velocity, which is designed to be more 

robust to external disturbances and model uncertainties than traditional methods that are theoretically proven 

in our previous work [16]. The Damper feeds back the error between the observed rigid-body velocity and 

link velocity to a proportional-integral controller, adding system damping to achieve vibration suppression. 

The ability to decrease coupling torque and vibrations of the proposed method is verified by comparing it 

with a pure PI method in simulations. 

2. Coupling Model of a TITO System 

Fig. 1(a) shows that a two-link manipulator can be described as a TITO system. The TITO system’s 

coupling model is established in the Laplace domain, as shown in fig. 1 (b). 
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Fig. 1. (a) Diagram of a two-link manipulator. (b) The coupling model. 

In fig. 1, the Lj is the length of the jth link (j is 0, 1 or 2). Mi represents the mass of the ith joint (i is 1 or 2). 

MLi and Mload are the mass of the ith link and the payload installed on the end of this two-link manipulator. 
mi  

is the driving torque of the ith joint. 
miJ , 

liiJ , 
mi , li , 

miB , liB and ni are the motor-side inertia, link-side 

inertia, motor position, link position, motor-side viscous damping, link-side viscous damping and reduction 

ratio of the ith joint, respectively. The drive chain (includes torque sensor and harmonic drive) is modelled as 

a linear spring Ki and damping Di. In the coupling part, σ1 and σ2 are the deviation factors to simulate the 

unmodeled dynamic coupling errors. 

The link-side inertia 
liiJ  is given as 
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Therefore, the coupling model of the TITO system can be given by 

0 0 0oJ X D X K X C + + =      (2) 
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The Coulomb frictions, the Coriolis and centrifugal torque of the two-link manipulator are not considered 

temporally for simplicity. 

3. Controller Design 

In this paper, a TITO system is controlled in a decentralized structure. A velocity controller is proposed 

to suppress vibrations and decoupling torque. The proposed controller includes a controller C, a decoupler 

and a RBSO. The decoupler is designed in a simplified structure based on the dynamic model of the TITO 

system to decrease the influences of the decoupling torque. The RBSO is designed to damp vibrations, 

containing a SOB and a Damper, as shown in fig. 2. 

The RBSO suppresses vibrations by adding system damping after decoupling the TITO system. 

Therefore, the first step is to design the decoupler. 

3.1. Decoupler design 
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The decoupler is dynamically designed in a simplified structure [17]. In order to facilitate design, the 

coupling model needs to be equivalently transformed based on the system transfer function built in figure 

1(b). Then, the TITO system with a decoupler can be equivalently transformed, as shown in fig. 3. 
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Fig. 2. Block diagram of the proposed method. 
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Fig. 3. Block diagram of the TITO system with a decoupler. 

In the new TITO system, the transfer functions ( )11G s , ( )12G s , ( )21G s  and ( )22G s  are given as  
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To achieve the TITO system decoupled, it needs to diagonalize the transfer matrix from  11 22
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Therefore, the decoupler is designed as 
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3.2. Rigid-body state observer design 

Based on the TITO system decoupled, the RBSO is designed to suppress vibrations in a decentralized 

structure, as shown in Fig. 2. The rigid-body velocity is a state variable to be observed by SOBi, as shown in 

figure 4 [18]. The decoupled jointi is modelled as a two-inertia system. Ji is the sum of the actual motor-side 

inertia and actual link-side inertia. Jni is the sum of the nominal motor-side inertia and nominal link-side 

inertia. Jni = Jmi + Jlii. 
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Fig. 4. Block diagram of the SOBi. 

In the SOBi, the transfer function Tni is 
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where 
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When the parameter Kni increases, the bandwidth of the SOBi improves. The rigid-body velocity 
ri  can 

be obtained accurately with the parameter Kni increasing. 

Combined with the Damperi shown in figure 2, the RBSOi feeds back the error between link velocity 
li  

and rigid-body velocity 
ri  to the controller Ci. 

As for the flexible jointi, the open-loop and closed-loop transfer functions from the velocity error ei to 

link velocity 
li  are given in equations (13) and (14), respectively. 
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Compared the closed-loop to the open-loop transfer function, the closed-loop transfer function adds a 

damping term –giCis to the decoupled flexible jointi. When the Damperi is designed as a negative 

proportional gain, the system damping of the decoupled flexible jointi can be increased. Then the vibrations 

can be damped by the increased system damping [16]. 

4. Simulations 

In order to verify the ability to decrease coupling torque and vibrations, a two-link manipulator model is 

established in the Simulink of MATLAB, as shown in fig. 5. In the simulation model, the gravity and 

nonlinear frictions are not considered temporarily. 

 

Fig. 5. Simulation model of the two-link manipulator. 

The dynamic parameters of the two-link manipulator and the flexible jointi are set in Table I. 

TABLE I.  DYNAMIC PARAMETERS OF THE TITO SYSTEM 

Notation Name Value Unit 

Two-link manipulator 

M1 Mass of the first flexible joint 2.68 kg 

M2 Mass of the second flexible joint 1.87 kg 

L1 Length of the first link 0.35 m 

L2 Length of the second link 0.35 m 

ML1 Mass of the first link 3.54 kg 

ML2 Mass of the second link 6.96 kg 

Mload Mass of the payload 0 kg 

Flexible jointi 

Jmi Motor-side inertia 7.34 kg·m2 

Bmi Motor-side viscous damping 33.28 N·m·s/rad 

Jli Link-side inertia 2.26 kg·m2 

Bli Link-side viscous damping 5.00 N·m·s/rad 

1094



  

Ki Joint stiffness 32500.00 N·m/rad 

Di Joint damping 10.00 N·m·s/rad 

ni Reduction ratio of harmonic drive 160 - 

There are three comparison strategies to verify the effectiveness of the proposed method: 

1. Based on a pure PI controller, compare the simulation results before and after using the decoupler to 

verify the ability to restrain the coupling torque. 

2. Compare the simulation results before and after using the RBSO to verify the effectiveness in 

suppressing vibrations. 

3. Compare the simulation results before and after using the proposed method (Decouple + RBSO) to 

verify the effectiveness in decreasing coupling torque and vibrations simultaneously. 

In simulations, controller Ci is designed as a proportional-integral controller, as KPi and KIi. The control 

parameters of the proposed method are scheduled in Table II.  

TABLE II.  CONTROL PARAMETERS 

Notation Name Value 

KPi proportional gain of Ci 100 

KIi integral gain of Ci 1000 

σ1 
deviation factors of the decoupler 0.6 

σ2 

Kni gain of SOBi 600 

gi proportional gain of Damperi -0.5 

The desired velocity of the first flexible joint is a step waveform. It is actuated at 0.1s, then keeping 300 

rpm (0.196 rad/s) for 1.4 s. The desired velocity of the second flexible joint is 0, which will be only actuated 

by the coupling torque. The simulation results of the three comparison strategies are shown in fig. 6. 

The black thin dash line is the desired velocity. The blue thick dash line is the pure PI method. The green 

thick dotted line is the Decouple method. The red thick dash-dot line is the RBSO method. The black thick 

solid line is the proposed method (Decouple + RBSO). 

  

(a) (b) 

  

(c) (d) 

Fig. 6. Simulation results of the two-link manipulator. 

(a) Motor velocity tracking of the first flexible joint. (b) Link velocity tracking of the first flexible joint. (c) 
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Motor velocity tracking of the second flexible joint. (d) Link velocity tracking of the second flexible joint. 

The simulation results show that the RBSO method can suppress vibrations effectively, compared with 

the pure PI method and Decouple method. The Decouple method can decrease coupling torque effectively, 

compared with the pure PI method and RBSO method. The proposed method (Decouple + RBSO) can damp 

vibrations and coupling torque simultaneously, compared with the other three methods. Since the deviation 

factors, σ1 and σ2 are set less than 1, which means the coupling torque can only be partially decoupled but not 

completely decoupled, as shown in fig. 6(c) and fig. 6(d). 

5. Conclusion 

A velocity controller for a TITO system in a decentralized structure to damp coupling torque and 

vibrations is proposed in this paper. The proposed controller decouples the coupling torque using a dynamic 

decoupler in a simplified structure. Based on the decoupled joint system, the proposed controller suppresses 

vibrations using a rigid-body state observer (RBSO) combined with a proportional-integral controller by 

adding system damping. Some comparisons among a pure PI method, a Decouple method, a RBSO method 

and the proposed method (Decouple + RBSO) are discussed, which verify the ability to damp coupling 

torque and vibrations of the proposed method. 
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